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Contrasting environmental preferences of photosynthetic and non-9 

photosynthetic soil cyanobacteria across the globe 10 

Running title: Global preferences of soil cyanobacteria 11 

Abstract 12 

Aim: Cyanobacteria have shaped the history of life on Earth, and continue to play important 13 

roles as carbon and nitrogen fixers in terrestrial ecosystems. However, their global distribution 14 

and ecological preferences remain poorly understood, particularly for two recently discovered 15 

non-photosynthetic cyanobacterial classes (Sericytochromatia and Melainabacteria).  16 

Location: 237 locations across six continents encompassing multiple climates (arid, temperate, 17 

tropical, continental and polar) and vegetation types (forests, grasslands and shrublands). 18 

Time period: Sampling was carried out between 2003 and 2015. 19 

Major taxa studied: Photosynthetic and non-photosynthetic cyanobacterial taxa  20 

Methods: We conducted a field survey and used co-occurrence network analysis and structural 21 

equation modelling to evaluate the distribution and environmental preferences of soil 22 

cyanobacteria across the globe. These ecological preferences were used to create a global atlas 23 

(predictive distribution maps) of soil cyanobacteria. 24 

Results: Network analyses identified three major groups of cyanobacteria taxa, which resembled 25 

the three main cyanobacterial classes: the photosynthetic Oxyphotobacteria-dominated cluster, 26 

which were prevalent in arid and semiarid areas, and the non-photosynthetic 27 
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Sericytochromatia- and Melainabacteria-dominated clusters, which preferred hyperarid 28 

oligotrophic and acidic/ humid environments, respectively. 29 

Main conclusions: This study provides novel insights into the environmental preferences of non-30 

photosynthetic cyanobacteria in soils globally. Our findings highlight the contrasting 31 

environmental preferences among the three clusters of cyanobacteria and suggest that 32 

alterations in environmental conditions linked to climate change may result in important 33 

changes in the ecology and biogeography of these functionally important microorganisms.  34 

Keywords: non-photosynthetic Cyanobacteria, Cyanobacteria, global distribution, microbial 35 

biogeography, microbial network, 16S amplicon sequencing 36 

1 INTRODUCTION 37 

Cyanobacteria are microorganisms ƌespoŶsiďle foƌ soŵe of the ŵost iŵpoƌtaŶt eǀeŶts iŶ Eaƌth’s 38 

history, including the rise of oxygen levels via oxygenic photosynthesis (Dismukes et al., 2001; 39 

Rasmussen et al., 2008) and the formation of plastids through endosymbiosis (Mereschkowsky, 40 

1905; Margulis, 1970). Despite being one of the most studied microbial groups (Castenholz et 41 

al., 2001; Garcia-Pichel et al., 2003; Garcia-Pichel, 2009; Whitton & Potts, 2012), there are still 42 

major gaps of knowledge associated with the diversity and global distribution of these 43 

organisms. Recent studies have revealed the existence of two new bacterial clades closely 44 

related to cyanobacteria, 4C0d-2 (Melainabacteria) and ML635J-21 (Sericytochromatia), 45 

recently proposed as new classes of phylum cyanobacteria (Soo et al., 2014, 2017). These non-46 

photosynthetic classes are included in the latest releases of the most commonly used rRNA 47 

databases, Silva and Greengenes (DeSantis et al., 2006; Quast et al., 2013). Unlike 48 

photosynthetic cyanobacteria (hereafter class Oxyphotobacteria), these clades have no genes 49 

associated with photosynthesis, and have provided a new perspective on the phylum, 50 

broadening our understanding of the functional capabilities of cyanobacteria and their 51 

evolutionary origin.  52 

The construction of metagenome-assembled genomes has enabled the assessment of 53 

the metabolic potential of these organisms, suggesting that Melainabacteria and 54 

Sericytochromatia are chemoheterotrophs with metabolisms mostly centered on fermentation 55 

(Di Rienzi et al., 2013; Soo et al., 2014, 2017; Soo, 2015). Additionally, no genes for phototrophy 56 

or carbon (C) fixation have been found in Melainabacteria and Sericytochromatia (Soo et al., 57 

2017), indicating that oxygenic photosynthesis could be a trait acquired later in 58 

Oxyphotobacteria by horizontal gene transfer (Raymond et al., 2002). Such physiological and 59 
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genetic differences might result in contrasting ecological preferences for these novel 60 

cyanobacterial taxa, but empirical evidence for this is lacking. 61 

Soil-borne Oxyphotobacteria are widely distributed on the Earth (Garcia-Pichel et al., 62 

2003; Whitton & Potts, 2012; Moreira et al., 2013) but they are specially predominant in hot 63 

arid and polar regions with sparse plant cover. They are an important component of biocrusts, 64 

soil surface communities dominated by lichens, mosses, cyanobacteria and associated 65 

microorganisms (Weber et al. 2016) and play key ecological roles in these environments by 66 

regulating critical soil processes such as nitrogen (N) and C fixation, soil stabilization and 67 

infiltration/runoff (Mager & Thomas, 2011; Sciuto & Moro, 2015). Other terrestrial 68 

cyanobacterial communities grow on the surface or inside rocks and soil (endolithic and subsoils 69 

forms), and are well adapted to dry conditions and high or low irradiation regimes (Warren-70 

Rhodes et al., 2006; Domínguez & Asencio, 2011; Puente-Sánchez et al., 2018). The capacity of 71 

Oxyphotobacteria to stay dormant during long periods of time is also a fundamental 72 

characteristic of these organisms, which allow them to survive in extreme environments 73 

characterized by high or low temperatures, desiccation regimes or high ultraviolet radiation 74 

(Garcia-Pichel, 2009; Quesada & Vincent, 2012; Whitton & Potts, 2012). 75 

Local and regional studies show that soil Oxyphotobacteria are generally considered to 76 

prefer neutral to alkaline pH for optimum growth (Brock, 1973; Whitton & Sinclair, 1975; Nayak 77 

& Prasanna, 2007). However, the global biogeography of soil Oxyphotobacteria has not been 78 

fully resolved due to the concentration of cyanobacterial research in particular regions, e.g. 79 

studies in western United States or the Antarctic continent (Garcia-Pichel et al. 2001; Namsaraev 80 

et al. 2010)(Garcia-Pichel et al., 2003; Moreira et al., 2013; Büdel et al., 2016; Williams et al., 81 

2016) and the focus given to key and abundant taxa, such as Microcoleus vaginatus or the genus 82 

Chroococidiopsis (Bahl et al., ϮϬϭϭ; Dǀořák et al., 2012), or specific habitats such as cold 83 

ecosystems and deserts (Jungblut et al. 2010; Bahl et al. 2011). There are clear gaps of 84 

knowledge of their distribution in certain regions of the world, such as South America (Büdel et 85 

al., 2016). Despite their wide dispersal ability due to small size, aeolian transport and tolerance 86 

to desiccation and irradiation (Billi et al., 2000; Kellogg & Griffin, 2006), and their often 87 

cosmopolitan distribution (Garcia-Pichel et al., 1996; Taton et al., 2006; Flombaum et al., 2013), 88 

current knowledge suggests a more complex biogeography of these microorganisms that is likely 89 

to be also influenced by their phylogeny and historical legacies (Garcia-Pichel et al., 1996, 2003; 90 

Taton et al., 2006; Nayak & Prasanna, 2007; Flombaum et al., 2013).  91 

The ecology and biogeography of the non-photosynthetic cyanobacteria classes 92 

(Melainabacteria and Sericytochromatia) in soils is poorly known. Available information on these 93 

organisms comes from genomes from aphotic environments such as animal guts or subsurface 94 
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groundwater and artificial systems such as water treatment facilities and laboratory bioreactors 95 

(Ley et al., 2005; Warnecke et al., 2007; Yagi et al., 2010; Di Rienzi et al., 2013; Soo et al., 2014; 96 

Utami et al., 2018) and the scarce environmental studies correspond only to aquatic ecosystems 97 

such as lakes and algal biofilms (Monchamp et al., 2018, 2019). 98 

To advance our understanding of the biogeography and ecological preferences of soil 99 

photosynthetic and non-photosynthetic cyanobacteria, we used data from a global soil survey 100 

covering a wide diversity of climate, soil and vegetation types (Delgado-Baquerizo et al., 2018). 101 

We expected the distinct ecological attributes of photosynthetic and non-photosynthetic 102 

cyanobacteria to be associated with very different environmental preferences. For example, we 103 

know that some Oxyphotobacteria have developed highly competitive adaptations to thrive in 104 

arid soils with low soil organic C and plant productivity (Lund, 1967; Whitton & Sinclair, 1975; 105 

Maestre et al., 2015). In these environments, we expect Oxyphotobacteria to dominate due to 106 

their capacity to build protective sheath pigments and to fix atmospheric C and N, which can be 107 

an important ecological advantage. However, Oxyphotobacteria are also expected to appear in 108 

a wide variety of environmental conditions, including low light, low oxygen or even anoxygenic 109 

environments due to their enormous functional diversity (Stal & Moezelaar, 1997; Adams & 110 

Duggan, 1999; Garcia-Pichel, 2009; Puente-Sánchez et al., 2018). Conversely, non-111 

photosynthetic cyanobacteria rely on soil organic C pools to grow, which could translate into 112 

contrasting preferences related to soil nutrient availability. We expect to find groups of taxa co-113 

occurring and sharing similar environmental preferences (hereafter ecological clusters) related 114 

to photosynthetic capability, habitat preferences and historical legacies. 115 

2 MATERIALS AND METHODS 116 

2.1 Global survey: Sites, soil collection, soil and molecular analyses 117 

We used 16S rRNA gene amplicon sequencing data from a global survey of 237 locations (Fig. 118 

S1) across six continents encompassing multiple climates (arid, temperate, tropical, continental 119 

and polar) and vegetation types (forests, grasslands and shrublands) (Delgado-Baquerizo et al., 120 

2018). A composite soil sample (0-7.5 cm depth) was collected under the dominant vegetation 121 

at each surveyed location. A fraction of each sample was immediately frozen at -20oC for 122 

molecular analyses; the other fraction was air-dried for chemical analyses. Sample collection of 123 

soils took place between 2003 and 2015. We do not expect differences in the timing of sample 124 

collection to largely affect our results for two main reasons. First, at the global scale seasonal 125 

variability is expected to be largely overcome by cross-biome variability (e.g., see Carini et al., 126 

2020 on the importance of spatial vs. temporal scales when analyzing soil microbial 127 

communities). To put it simple, a dryland and a boreal forest are so different that usually harbor 128 
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distinct microbial communities regardless of their seasonal variability. Second, we are using 129 

amplicon sequencing DNA-based analyses (see below), which characterize not only the active 130 

portion of cyanobacterial communities but also the dormant one at the moment of sampling (Li 131 

et al., 2017). The soils sampled comprise a wide variety of physico-chemical properties, pH 132 

ranged from 4.04 to 9.21, texture of the fine fraction (%clay+silt) ranged from 1.4 to 92.0%, soil 133 

total organic carbon (OC) from 0.15 to 34.77%, soil total nitrogen (TN) from 0.02 to 1.57, C:N 134 

ratio (CN) ranged from 2.12 to 67.52 and soil total phosphorus (TP) from 75.10 to 4111.04 mg P 135 

kg-1 soil. These analyses were done using standard laboratory methods described in Delgado-136 

Baquerizo et al. (2018). 137 

Climatic variables (maximum and minimum temperature [MAXT, MINT], precipitation 138 

seasonality [inter-annual coefficient of variation in precipitation, PSEA] and mean diurnal 139 

temperature range [MDR]) were obtained for each site from the WorldClim database (Hijmans 140 

et al., 2005). Aridity Index (precipitation/potential evapotranspiration) was obtained from the 141 

Global Potential Evapotranspiration database (Zomer et al., 2008), which uses interpolations 142 

from WorldClim. The annual ultraviolet index (UV Index), a measure of the risk of UV exposition 143 

ranging from 0 (minimal risk) to 16 (extreme risk), was obtained for each site using data from 144 

the Aura satellite (Newman & McKenzie, 2011). Net aboveground primary productivity [ANPP] 145 

was estimated with satellite imagery using the Normalized Difference Vegetation Index (NDVI) 146 

fƌoŵ the Modeƌate ResolutioŶ IŵagiŶg “peĐtƌoƌadioŵeteƌ ;MODI“Ϳ aďoaƌd NA“A’s Teƌƌa 147 

satellites (Justice et al., 1998). This index provides a global measure of the greenness of the Earth 148 

for a given period (Pettorelli et al., 2005). Here, we used monthly averaged values for NDVI for 149 

the sampling period between 2003 and 2015 (10 km resolution). 150 

Microbial DNA was extracted using the PowerSoil DNA Isolation Kit (MoBio Laboratories, 151 

Caƌlsďad, CA, U“AͿ folloǁiŶg ŵaŶufaĐtuƌeƌ’s iŶstƌuĐtioŶs. DNA eǆtƌaĐts ǁeƌe seƋueŶĐed 152 

targeting the bacterial V3-V4 region using 16S rRNA gene primers 341F 153 

(CCTACGGGNGGCWGCAG) and 805R (GACTACHVGGGTATCTAATCC) and the Illumina Miseq 154 

platform of the Next Generation Genome Sequencing Facility at Western Sydney University 155 

(Australia). Bioinformatic analyses were performed with a combination of QIIME (Caporaso et 156 

al., 2010), USEARCH (Edgar, 2010) and UPARSE (Edgar, 2013). After merging of the reads, the 157 

primers were trimmed and sequences of low quality (expected error rate > 1) were discarded. 158 

Phylotypes were defined with UCLUST (Edgar, 2010) at an identity level of 97% and taxonomy 159 

was assigned using Silva Incremental Alligner Search and classify with Silva database 160 

(complementing not identified phylotypes with Greengenes database) (DeSantis et al., 2006; 161 

Quast et al., 2013). Phylotypes represented by only a single read (singletons) were removed. The 162 

final dataset of phylotypes was filtered for phylum Cyanobacteria (excluding Chloroplast) and 163 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

the relative abundance each of cyanobacterial phylotype in relation to total bacteria (all 16S 164 

rRNA reads) was calculated. 165 

2.2 Structure of the community: Network analyses 166 

To explore the different patterns of cyanobacterial co-occurrence across our samples, we 167 

conducted a network analysis with the CoNet software (Faust & Raes, 2016). This tool detects 168 

significant non-random patterns of co-occurrence using multiple correlation and dissimilarity 169 

measures. Two correlation coefficients (Pearson and Spearman) and dissimilarity distances 170 

(Bray-Curtis and Kullback Leiber) were used to obtain a more reliable network (Faust & Raes, 171 

2012). When links were detected by more than one correlation/dissimilarity measure, they were 172 

considered as a single link. Samples were standardized prior to network analyses with the 173 

͞Đol_Ŷoƌŵ͟ fuŶĐtioŶ, which divides each column by its sum, converting abundances in column-174 

wise proportions. We computed the network with the top 1000 links for each measure and 175 

tested the statistiĐal sigŶifiĐaŶĐe of eaĐh liŶk ǁith ϭϬϬϬ peƌŵutatioŶs aŶd the fuŶĐtioŶ ͞shuffle 176 

ƌoǁs͟ as the ƌesaŵpliŶg stƌategǇ. Multiple testiŶg ǁas ĐoƌƌeĐted ďǇ usiŶg BeŶjaŵiŶi-HoĐhďeƌg’s 177 

procedure (Benjamini & Hochberg, 1995), keeping links with an adjusted merged p-value below 178 

0.05. The final network was visualized with the interactive platform gephi (Bastian et al., 2009). 179 

We oďtaiŶed the eĐologiĐal Đlusteƌs ǁith the fuŶĐtioŶ ͞fastgƌeedǇ͟ fƌoŵ the igƌaph paĐkage 180 

(Csárdi & Nepusz, 2006) in R version 3.4.0 (Team, 2013), and tested the statistical significance of 181 

modularity using 10000 random networks. Network analysis allowed us to divide the community 182 

between ecological clusters, that we used for further analysis. The relative abundance of each 183 

ecological cluster per sample was calculated by averaging the standardized (z-score) relative 184 

abundance of the phylotypes present within each ecological cluster. Thus, we obtained a 185 

balanced contribution of each cyanobacterial phylotype to the relative abundance of its 186 

ecological cluster. Note that the use of z-score standardization transforms relative abundances, 187 

and therefore negative values can be obtained. 188 

2.3 Factors determining cyanobacterial global distribution 189 

Environmental effects: We conducted Structural Equation Modelling (SEM, Grace 2006) to 190 

evaluate the direct and indirect effects of spatial, climatic, vegetation and soil variables as 191 

predictors of the abundance of the main cyanobacterial ecological clusters (See Fig. S2 for our a 192 

priori model). This approach is useful for simultaneously testing the influence of multiple 193 

variables and the separation of direct and indirect effects of the predictors included in the model 194 

(Grace, 2006). These included spatial (Latitude, sine Longitude, cosine Longitude), climatic 195 

(MDR, MAXT, MINT, PSEA and Aridity [1-Aridity Index]) and vegetation (Grassland, Forest and 196 
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ANPP) variables, as well as soil properties (CN, soil OC, pH and percentage of clay and silt). Prior 197 

to modelling, we transformed them to improve normality: Aridity, OC, PSEA and CN were log-198 

transformed and both ANPP and the percentages of clay and silt were square root transformed. 199 

We used the chi-square fit test, supplemented with root mean square error of approximation 200 

(RMSEA) to test the overall fit of the model. We analysed path coefficients of the model and 201 

their associated P values and the total effects of each variable. As some of the variables were 202 

not normally distributed despite transforming them, we used 5000 bootstraps to simultaneously 203 

test the significance of each path. SEM analyses were conducted using AMOS 24.0.0 (IBM SPSS, 204 

Chicago, IL, USA). 205 

To obtain a prediction of the potential distribution of the main cyanobacterial ecological 206 

clusters, we used the regression model Cubist (Quinlan, 2014) as implemented in the R package 207 

Cubist (Kuhn et al., 2016). This model uses a linear regression tree analysis that predicts the most 208 

important factors affecting the abundance of each ecological cluster based on environmental 209 

covariates. Covariates in our models included the same variables used in our SEMs. Global 210 

predictions of the distribution of major clusters were done on a 25 km resolution grid. Soil 211 

properties for this grid were obtained from SoilGrids (Hengl et al., 2017). Major vegetation types 212 

(grasslands and forests) were obtained using Globcover2009 map from the European Space 213 

Agency (Bontemps et al., 2013). Information on climate, UV index and net primary productivity 214 

were obtained from the WorldClim database and NASA satellites as described above. 215 

We conducted multiple analyses to support the validity of our global prediction maps. 216 

First, we used kernel density estimations to compare the distribution of key soil and climate 217 

variables of our dataset with those from high resolution global maps: SoilGrids (Hengl et al., 218 

2017) and Worldclim (Hijmans et al., 2005). Our dataset comprises a large percentage of their 219 

global variability (Fig. S3): 78.51% for OC, 94% for pH, 58.25% for Aridity, 45.98% for PSEA, 220 

71.63% for MINT, 47.03% for MAXT and 96.43% for ANPP. These results indicate that our 221 

sampling covers a large proportion of the environmental variability found on Earth. Second, we 222 

found a strong correlation between the relative abundance of our cyanobacterial ecological 223 

clusters and key microbial environmental factors at the global scale (see results below), which 224 

suggests that environmental data can be used to predict their distribution. Finally, predictive 225 

maps were cross-validated with an independent dataset obtained from the Earth Microbiome 226 

Project (EMP, Thompson et al., 2017), which contains data on soil cyanobacteria from 403 sites 227 

worldwide (see Fig. S1). For doing so, we estimated the relative abundance of the three main 228 

cyanobacterial clusters for the EMP dataset using the 97% similar EMP phylotypes. We first 229 

calculated relative abundance of each cyanobacterial phylotype in relation to total bacteria (all 230 

16S rRNA reads of the EMP dataset). Then, the relative abundance of each ecological cluster per 231 
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sample was computed by averaging the standardized (z-score) relative abundance of the 232 

phylotypes of each ecological cluster, as explained above for our dataset. We then used our 233 

predictive maps to extract the predicted relative abundance of each cluster for the EMP 234 

locations. These predictive abundances were then compared with the independent results of 235 

relative abundance of each cluster calculated with the EMP dataset using Pearson correlations.  236 

We also conducted a Permanova analysis with Bray Curtis distances to evaluate the 237 

effect of vegetation type on the abundance of each cyanobacterial cluster with the adonis 238 

function and 1000 permutations. To test for the differences in the relative abundance of each 239 

cluster across vegetation types we first tested the homogeneity of groups dispersions 240 

(variances) with betadisper function and from the result of that call we performed the post hoc 241 

analysis Tukey Honest Significant Differences with TukeyHSD function. All these analysis were 242 

done with vegan v2.4-2 (Oksanen, 2015) and R version 3.6.0 (Team, 2013). 243 

Phylogenetic tree: The phylogenetic tree of cyanobacteria was constructed using the SILVA 244 

Alignment, Classification and Tree (ACT) Service (www.arb-silva.de/act). Multiple sequence 245 

alignment of the 343 rRNA gene sequences was performed using SINA v1.2.11 (Pruesse et al., 246 

2012). A phylogenetic tree was obtained with their built-in tree computation tool FastTree (Price 247 

et al., 2009) using the General Time Reversible Model of nucleotide evolution (Nei & Kumar, 248 

2000) and keeping the default parameters. The display and annotation of phylogenetic tree were 249 

made with iTol v5.5 (Letunic & Bork, 2019). 250 

3 RESULTS 251 

3.1 Global cyanobacterial co-occurrence patterns 252 

Despite the common and widespread occurrence of soil cyanobacterial taxa on Earth, we did 253 

not find any of the 343 phylotypes present in all samples. The most ubiquitous cyanobacterial 254 

phylotype, Microcoleus vaginatus, was detected in 113 of the 237 sites surveyed. Moreover, the 255 

relative abundance of cyanobacterial phylotypes in our soils ranged from 0.01% to 4.35% of all 256 

bacterial 16S rRNA gene sequences (see Table S1). The cyanobacterial orders with the highest 257 

relative abundances included Oscillatoriales (Oxyphotobacteria), followed by Obscuribacterales 258 

(Melainabacteria) and Nostocales (Oxyphotobacteria) (Fig. 1). Non-photosynthetic phylotypes 259 

appeared almost in all samples (235/237 samples 99.2%). Photosynthetic cyanobacteria 260 

phylotypes appeared in the majority of them (185/237, 78.1%).  261 

Our final network had 281 phylotypes and was arranged in 10 ecological clusters. Among 262 

these clusters, we identified three major groups of taxa co-occurring and comprising 65% of the 263 
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cyanobacterial phylotypes identified (Fig. 2a). The remaining seven clusters were minor, 264 

encompassing from 8% to 1% of phylotypes. The three main ecological clusters were dominated 265 

by either Oxyphotobacteria (82% of 76 phylotypes), Sericytochromatia (52% of 31 phylotypes) 266 

or Melainabacteria (83% of 76 phylotypes; see Table S1). We focused on these main ecological 267 

clusters for the downstream analyses. Our correlation network showed a contrasting node 268 

distribution for cyanobacterial phylotypes characterized by photosynthetic and non-269 

photosynthetic capabilities (Fig. 2b). Overall, the three ecological clusters identified were 270 

strongly dominated by the three extant cyanobacterial classes (Fig. 2c, 2d).  271 

3.2 Environmental preferences of photosynthetic and non-photosynthetic soil 272 

cyanobacteria 273 

Vegetation type significantly affected the abundance of each of the main cyanobacterial clusters 274 

identified (Permanova R2=0.28, 0.24 and 0.15 for Melainabacteria, Sericytochromatia and 275 

Oxyphotobacteria-dominated clusters, respectively, p<0.05 in all cases).  276 

Our SEM model indicated that the cluster dominated by Oxyphotobacteria was 277 

positively and negatively related to aridity and net aboveground productivity, respectively (Figs. 278 

3, 4 and S4a), which explains their high relative abundance in dry grasslands (Fig. 6). We also 279 

observed a positive association between the relative abundance of the Oxyphotobacteria 280 

dominated cluster and both soil pH and minimum temperature (Fig. 3, 4, and S4a). We predicted 281 

the distribution of this cluster in a wide range of arid and semiarid areas worldwide (e.g., 282 

southern Sahara, southern Africa, northern Australia, India, Arabian Peninsula, areas 283 

surrounding the Amazon Basin, southwestern US and northwestern Mexico; Fig. 5a). 284 

The cluster dominated by Sericytochromatia had a strong preference for arid 285 

environments with low soil C content (Fig. 3, 4, 6 and S4b). Taxa within this ecological cluster 286 

were also positively associated with locations characterized by high inter-annual rainfall 287 

variability (Figs. 3, 4 and S4b). Our global atlas predicts that taxa within this ecological cluster 288 

can be found in hyper-arid areas such as the Saharan Desert, central Australia, the Atacama, 289 

Gobi and Taklamakan Deserts and the Arabian Peninsula, with almost no areas of intermediate 290 

relative abundance (Fig. 5b).  291 

Unlike the other two ecological clusters identified, the Melainabacteria-dominated 292 

cluster showed a preference for humid and acidic soils, as indicated by the reduced relative 293 

abundance of this cluster with increases in aridity and pH (Figs. 3, 4 and. S4c). The vast majority 294 

of phylotypes found in our study corresponded to the order Obscuribacterales (1, 2d). This 295 

ecological cluster is found mainly in tropical and cold forests and grasslands (which are mostly 296 

temperate; see Fig. 6). Prediction maps show high relative abundance values of this cluster in 297 
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humid areas of the Amazon Basin, central Africa, west Asian coast and Pacific Islands (Fig 5c). 298 

Despite the methodological differences between our dataset and the EMP dataset (primer sets 299 

used here 341F/805R vs. 515F/806R for the EMP; read lengths here 400bp/sequence vs. <150bp 300 

for the EMP and the lack of standardization in the EMP soil sampling protocols and metadata 301 

collection) we obtained positive and significant correlations between both results: 302 

MelaiŶaďaĐteƌia doŵiŶated Đlusteƌ PeaƌsoŶ’s ƌ=Ϭ.Ϯϴ ;P<Ϭ.ϬϬϭͿ, “eƌiĐǇtoĐhƌoŵatia doŵiŶated 303 

Đlusteƌ PeaƌsoŶ’s ƌ=Ϭ.5ϯ ;P<Ϭ.ϬϬϭͿ, OǆǇphotoďaĐteƌia doŵiŶated Đlusteƌ PeaƌsoŶ’s ƌ=Ϭ.ϯ5 304 

(P<0.001). These results support the validity of our maps as representative of the distribution of 305 

the main ecological clusters of cyanobacteria across the globe. 306 

4 DISCUSSION 307 

The discovery of non-photosynthetic cyanobacteria has expanded one of the currently most 308 

diverse bacterial phylum  (Castenholz et al., 2001; Garcia-Pichel, 2009; Whitton & Potts, 2012; 309 

Dǀořák et al., 2017). There is a large body of knowledge about photosynthetic cyanobacteria 310 

showing their importance in terrestrial ecosystems, as they are key components of cryptogamic 311 

covers, which are estimated to fix 3.9 Pg carbon per year (Elbert et al., 2012). They increase soil 312 

fertility by fixing atmospheric N (Cleveland et al., 1999), stabilize soils by producing extracellular 313 

polysaccharides (Mazor et al., 1996; Mager & Thomas, 2011), protecting it from erosion and 314 

creating suitable habitats for the colonization of mosses and lichens (Zhang, 2005; Lan et al., 315 

2015). However we know relatively little about the distribution and environmental drivers of the 316 

newly described non-photosynthetic cyanobacteria in soils. Our work provides novel insights 317 

into the ecology and biogeography of these key organisms, and advances our understanding of 318 

on the potential vulnerabilities of photosynthetic and non-photosynthetic cyanobacteria to 319 

changing environmental conditions.  320 

Photosynthetic taxa represented by the Oxyphotobacteria-dominated cluster prefer 321 

areas with sparse vegetation cover, and therefore greater accessibility to light, such as dry 322 

grasslands (Figs. 3,4, 6 and S4a). Accordingly, they are reported as key components of biocrust 323 

communities in low productivity ecosystems such as arid environments (Garcia-Pichel, 2009; 324 

Belnap et al., 2016), where the ability to fix atmospheric C and N can be an important ecological 325 

advantage. As with the remaining bacterial communities (Fierer & Jackson, 2006) soil acidity is 326 

a key factor shaping the global distribution of Oxyphotobacteria (Fig. 4). Consistentwith previous 327 

studies (Baas-Becking et al., 1960; Brock, 1973; Nayak & Prasanna, 2007) we found that 328 

photosynthetic cyanobacteria have a preference for neutral to alkaline soils (Figs. 3,4 and S4a), 329 

which are characteristic of drylands (Schlesinger & Bernhardt, 2013). Our analyses further 330 

indicate a wide distribution of this cluster in drylands worldwide (Fig. 5), as previously reported 331 
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for members of this taxa in continental-scale distribution studies (Bahl et al., 2011; Garcia-Pichel 332 

et al., 2013). Together with temperature, soil moisture plays a key role driving the physiology, 333 

small-scale distribution and behaviour of soil photosynthetic cyanobacteria (Garcia-Pichel & 334 

Pringault, 2001; Rajeev et al., 2013). The high tolerance and photosynthetic performance of 335 

Oxyphotobacteria at high temperatures is one of the reasons why cyanobacterial-dominated 336 

biocrusts are so abundant in hyper-arid and arid environments (Grote et al., 2010; Wang et al., 337 

2012). Thus, we observed a positive influence of high minimum temperatures and aridity on this 338 

cyanobacterial cluster (Figs. 3. and S4a). By moving from local/regional to the global scale, 339 

including samples from poorly-studied regions of South America (Garcia-Pichel et al., 2003; 340 

Büdel et al., 2016), and considering multiple terrestrial global biomes, our results provide novel 341 

predictions of the global distribution of Oxyphotobacteria in global soils. 342 

Unlike Oxyphotobacteria, non-photosynthetic cyanobacteria require relatively large soil 343 

organic C pools for growth. We observed contrasting environmental preferences for each of the 344 

non-photosynthetic clusters across the oligotrophic-copiotrophic continuum, such as those 345 

reported for other soil heterotrophic organisms (e.g., methanotrophs in Nazaries et al. 2018). A 346 

key finding of our study is that the Melainabacteria-dominated cluster was especially abundant 347 

in mesic forests (tropical and cold forests, Fig. 6) and temperate grasslands, while the 348 

Sericytochromatia-dominated cluster is associated with locations with reduced plant cover and 349 

high temperatures (e.g., hyperarid deserts in Fig. 5, dry grasslands in Fig. 6). We found very little 350 

overlap between the predicted distributions of non-photosynthetic clusters of cyanobacteria 351 

(Figs. 5b, 5c) and a negative relationship between the relative abundances of these two non-352 

photosynthetic clusters (Spearman correlation r= -0.31, p<0.05). Interestingly, a sizable 353 

percentage of members of Melainabacteria appears in the Sericytochromatia dominated-cluster 354 

(38%). We know that members of class Melainabacteria are capable of aerobic respiration 355 

because they contain respiratory components of the complex III-IV operon, which is adapted to 356 

low oxygen conditions, a C-family oxygen reductase and two cytochrome bc oxydases (Soo et 357 

al., 2017). However, the Melainabacteria-dominated cluster is dominated by members of the 358 

order Obscuribacterales (Fig. 2d), for which there is little functional information available in the 359 

literature. Genomic analyses of the Candidatus Obscuribacter phosphatis suggest that this 360 

particular species is adapted to dynamic environments involving feast-famine nutrient cycles, 361 

and has the capacity for aerobic or anaerobic respiration and fermentation (Soo et al., 2014). 362 

These features allow it to survive in both oxic and anoxic environments. To our knowledge there 363 

is no information available of the contribution of this cyanobacterium to the structure and 364 

function of forest ecosystems. However, our results suggest that molecular ecologists and 365 

taxonomists targeting taxa in Melainabacteria-dominated cluster should focus mainly on mesic 366 
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forests across the globe. We also expect non-photosynthetic cyanobacteria to play a significant 367 

role in soil biogeochemical cycles in both high and low productive soils through C degradation 368 

and/or H2 production, as reported for Melainabacteria in an alluvial aquifer (Wrighton et al., 369 

2014). However, studies linking non-photosynthetic soil cyanobacteria to carbon degradation in 370 

terrestrial environments are still lacking. Future studies are thus needed to identify the relative 371 

contributions of non-photosynthetic cyanobacteria to organic matter decomposition and C 372 

cycling in soils from contrasting biomes.  373 

The topology of our phylogenetic tree (Fig. 2c) reflects the expected evolutionary 374 

relationships from previous research with separation of three main clades (Soo et al., 2017); the 375 

basal deep branched Sericytochromatia, Melainabacteria and photosynthetic 376 

Oxyphotobacteria. As the ecological clusters are related to these classes, their global distribution 377 

is likely to be related to past evolutionary events within this ancient phylum (Bahl et al., 2011; 378 

Moreira et al., 2013). The ecological diversification observed in the non-photosynthetic clades 379 

is particularly noteworthy. We found a niche-differentiation between the basal cyanobacterial 380 

clade, Sericytochromatia, which occupies extremely dry environments, and Melainabacteria, 381 

which is mostly found in humid forests. Interestingly, the presence of phylotypes from 382 

Melainabacteria in the Sericytochromatia-dominated cluster may point to the existence of 383 

common ancestral traits between both classes and the later expansion of Melainabacteria into 384 

Ŷeǁ ͞huŵid͟ ŶiĐhes. PhotosǇŶthetiĐ ĐǇaŶoďaĐteƌia ;Oxyphotobacteria) are known for being 385 

extraordinarily ecologically versatile, mostly living in environments with at least some exposure 386 

to sunlight, and capable of inactivating their photosynthetic apparatus (Harel et al., 2004) or 387 

performing light-independent energy generation (Stal, 2012) when needed. There is still no 388 

consensus about the date the acquisition of oxygenic photosynthesis by Oxyphotobacteria; this 389 

could have happened either after divergence from other non-photosynthetic clades (Soo et al., 390 

2017) or before, sharing a photosynthetic common ancestor (Harel et al., 2015). Regardless, the 391 

acquisition of oxygenic photosynthesis was a revolutionary event that allowed cyanobacteria to 392 

expand into diverse niches, and also the evolution of algae and terrestrial plants through 393 

endosymbiosis (Mereschkowsky, 1905; Margulis, 1970).  394 

Our findings represent a starting point towards the understanding of the ecological 395 

preferences and global distributions of non-photosynthetic soil cyanobacteria. They highlight 396 

the fact that major photosynthetic and non- photosynthetic groups of soil cyanobacteria have 397 

contrasting ecological preferences across the globe. However, and given the difficulty of 398 

predicting microorganisms at a global scale, conclusions should be viewed as preliminary. The 399 

potential distribution maps presented here and the identification of the main environmental 400 

drivers of soil cyanobacterial distribution also illustrate how different cyanobacterial lineages 401 
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might respond to ongoing climate and land use change. For example, the positive influence of 402 

aridity on the Sericytochromatia- and Oxyphotobacteria-dominated clusters suggests that the 403 

distribution of these taxa could expand under future climate change scenarios (Huang et al., 404 

2016). Consequently, our findings advance our understanding of the ecological distributions of 405 

these functionally important microbial communities and provide a basis for predicting possible 406 

future shifts of cyanobacterial terrestrial communities in a human-dominated, warmer and 407 

more arid world. To complement and expand our findings, future studies should further 408 

investigate the temporal dynamics of photosynthetic and non-photosynthetic cyanobacteria in 409 

terrestrial ecosystems, particularly along multiple temporal scales. 410 
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FIGURES 727 

 728 

Fig. 1. Taxonomic information on the relative abundance of cyanobacterial orders (a) and classes 729 

(b) across all sites. Ser.= Sericytochromatia (no orders described yet) and Glo. = Gloeobacteria. 730 
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 732 

Fig. 2 Global network of co-occurrences within soil cyanobacteria, colored by either main 733 

ecological clusters (a) or the photosynthetic capability of taxa (b). The size of the nodes is related 734 

to the number of links they contain. The network had 282 nodes (cyanobacterial phylotypes) 735 

and 986 significant links (potential ecological interactions between phylotypes) (c) Phylogenetic 736 

tree obtained with the main ecological clusters located at the end of the branch. Background 737 
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colored by cyanobacterial class, * for Gloeobacteria class. (d) Taxonomic composition in relation 738 

to total 16S reads. 739 

 740 

Fig. 3 Structural equation modelling (SEM) showing the direct effects of spatial (Latitude [LAT], 741 

Sine Longitude [sin(LONG)] and Cosine Longitude [cos(LONG)]) , climatic (maximum temperature 742 

[MAXT], minimum temperature [MINT], precipitation seasonality [PSEA] and aridity, calculated 743 

as 1-aridity index) and soil (soil organic carbon [OC] and pH) variables on the abundance of each 744 

ecological cluster. Numbers in arrows indicate standardized path coefficients, and their width is 745 

proportional to the strength of path coefficients. The proportion of variance explained (R2) 746 

appears below every response variable in the model. Significance levels are as follows *P<0.05, 747 

**P<Ϭ.Ϭϭ, aŶd ***P<Ϭ.ϬϬϭ. Model Χ2 =2.567, P= 0.463 df= 3, Bootstrap p= 0.254. Information 748 

on boxes 1-6 is shown in Fig. S2. 749 
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 750 

Fig. 4 Relationships between main environmental predictors and the relative abundance (z-751 

score) of each one of the cyanobacterial clusters. Significant (P<0.05) spearman correlation 752 

coefficients are shown on the upper part of each panel.  753 
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 755 

Fig. 5 Predicted global distribution of the relative abundance of the main ecological clusters of 756 

soil cyanobacteria. Percentage of variation explained by the models as follows: (a) 757 

Oxyphotobacteria-dominated cluster R2 = 0.28; P < 0.001, (b) Sericytochromatia-dominated 758 

cluster R2 =0.66; P < 0.001, (c) Melainabacteria-dominated cluster R2 = 0.35; P < 0.001. The scale 759 

bar represents the standardized abundance (z-score) of each ecological cluster. An independent 760 
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cross-validation for these maps using data from the Earth Microbiome Project (Thompson et al., 761 

2017) is described in the Methods section. 762 

763 

Fig. 6 Relative abundance of cyanobacterial clusters across major vegetation types. A) Stacked 764 

bars showing the percentage of phylotypes of each ecological cluster per vegetation type. 765 

n=Number of sites per each vegetation type B) Tukey HSD results testing the differences (letters 766 

and colour hues) in the relative abundances of each ecological cluster across vegetation types.  767 
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